Abstract

The mapping of resistance toMeloidogyne chitwoodi derived from Solarium bulbocastanum is reported. A population suitable for mapping was developed as follows. A somatic hybrid of nematode-resistant S. bulbocastanum and cultivated tetraploid potato was produced. This was backcrossed to tetraploid potato, and a single resistant BC1 was selected and backcrossed again to the same recurrent tetraploid parent. The mapping population consisted of 64 BC2 progeny scored for restriction fragment length polymorphic (RFLP) markers and 62 of these were evaluated for the reproductive efficiency of race 1 of M. chitwoodi. Forty-eight polymorphic RFLP markers, originally derived from tomato and mapped in diploid cultivated potato, were assigned to 12 chromosomes of S. bulbocastanum. Of the 62 progeny screened for nematode resistance, 18 were non-hosts and four were poor hosts. The rest were highly susceptible (good hosts). Analysis of the resistance (including non-hosts and poor hosts) as both a qualitative trait and as a meristic trait on which QTL analysis was applied supported the same genetic hypothesis. Genetic control was localized solely to factor(s) lying at one end of chromosome 11. The level of expression of resistance in the S. bulbocastanum parent and the resistant portion of the BC2 was essentially the same. This fact, together with the highly significant LOD scores for one end of the chromosome-11 marker array, supports a genetic model equivalent to monogenic dominant control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call