Abstract

Radio frequency (RF) sensors such as radar are instrumental for continuous, contactless sensing of vital signs, especially heart rate (HR) and respiration rate (RR). However, decades of related research mainly focused on static subjects, because the motion artifacts from other body parts may easily overwhelm the weak reflections from vital signs. This paper marks a first step in enabling RF vital sign sensing under ambulant daily living conditions. Our solution is inspired by existing physiological research that revealed the correlation between vital signs and body movement. Specifically, we propose to combine direct RF sensing for static instances and indirect vital sign prediction based on movement power estimation. We design customized machine learning models to capture the sophisticated correlation between RF signal pattern, movement power, and vital signs. We further design an instant calibration and adaptive training scheme to enable cross-subjects generalization, without any explicit data labeling from unknown subjects. We prototype and evaluate the framework using a commodity radar sensor. Under a variety of moving conditions, our solution demonstrates an average estimation error of 5.57 bpm for HR and 3.32 bpm for RR across multiple subjects, which largely outperforms state-of-the-art systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.