Abstract

현재 Hf (Hafnium)을 기반으로한 게이트 유전체의 연구는 여러 분야에서 다양하게 진행되어져 왔다. 이는 기존의 <TEX>$SiO_2$</TEX>보다 유전상수 값이 크고, 또한 계속되는 scaling-down 공정에서도 양자역학적인 터널링을 차단하는 특성이 뛰어나기 때문이다. MOSFET 구조에서 유전체 박막의 두께 감소로 인한 전기적 특성 저하를 보완하기 위해서 high-K 재료가 대두되었고 현재 주를 이루고 있다. 그러나 현재까지 <TEX>$HfO_2$</TEX>에 대한 nano-mechanical 특성 연구는 부족한 상태이므로 본 연구에서는 게이트 절연층으로 최적화하기 위하여 <TEX>$HfO_2$</TEX> 박막의 nano-mechanical properties를 자세히 조사하였다. 시료는 rf magnetron sputter를 이용하여 Si (silicon) 기판 위에 Hafnium target으로 산소유량(4, 8 sccm)을 달리하여 증착하였고, 이후 furnace에서 400에서 <TEX>$800^{\circ}C$</TEX>까지 질소분위기에서 20분간 열처리를 실시하였다. 실험결과 산소 유량을 8 sccm으로 증착한 시료가 열처리 온도가 증가할수록 누설전류 특성 성능이 우수 해졌다. Nano-indenter로 측정하고 Weibull distribution으로 정량적 계산을 한 결과, <TEX>$HfO_2$</TEX> 박막의 stress는 as-deposited 시료를 기준으로 <TEX>$400^{\circ}C$</TEX>에서는 tensile stress로 변화되었다. 그러나 온도가 증가(600, <TEX>$800^{\circ}C$</TEX>)할수록 compressive stress로 변화 되었다. 특히, <TEX>$400^{\circ}C$</TEX> 열처리한 시료에서 hardness 값이 (산소유량 4 sccm : 5.35 GPa, 8 sccm : 5.54 GPa) 가장 감소되었다. 반면에 <TEX>$800^{\circ}C$</TEX> 열처리한 시료에서는(산소유량 4 sccm : 8.09 GPa, 8 sccm : 8.17 GPa) 크게 증가된 것을 확인하였다. 이를 통해 온도에 따른 <TEX>$HfO_2$</TEX> 박막의 stress 변화를 해석하였다. Over the last decade, the hafnium-based gate dielectric materials have been studied for many application fields. Because these materials had excellent behaviors for suppressing the quantum-mechanical tunneling through the thinner dielectric layer with higher dielectric constant (high-K) than <TEX>$SiO_2$</TEX> gate oxides. Although high-K materials compensated the deterioration of electrical properties for decreasing the thickness of dielectric layer in MOSFET structure, their nano-mechanical properties of <TEX>$HfO_2$</TEX> thin film features were hardly known. Thus, we examined nano-mechanical properties of the Hafnium oxide (<TEX>$HfO_2$</TEX>) thin film in order to optimize the gate dielectric layer. The <TEX>$HfO_2$</TEX> thin films were deposited by rf magnetron sputter using hafnium (99.99%) target according to various oxygen gas flows. After deposition, the <TEX>$HfO_2$</TEX> thin films were annealed after annealing at <TEX>$400^{\circ}C$</TEX>, <TEX>$600^{\circ}C$</TEX> and <TEX>$800^{\circ}C$</TEX> for 20 min in nitrogen ambient. From the results, the current density of <TEX>$HfO_2$</TEX> thin film for 8 sccm oxygen gas flow became better performance with increasing annealing temperature. The nano-indenter and Weibull distribution were measured by a quantitative calculation of the thin film stress. The <TEX>$HfO_2$</TEX> thin film after annealing at <TEX>$400^{\circ}C$</TEX> had tensile stress. However, the <TEX>$HfO_2$</TEX> thin film with increasing the annealing temperature up to <TEX>$800^{\circ}C$</TEX> had changed compressive stress. This could be due to the nanocrystal of the <TEX>$HfO_2$</TEX> thin film. In particular, the <TEX>$HfO_2$</TEX> thin film after annealing at <TEX>$400^{\circ}C$</TEX> had lower tensile stress, such as 5.35 GPa for the oxygen gas flow of 4 sccm and 5.54 GPa for the oxygen gas flow of 8 sccm. While the <TEX>$HfO_2$</TEX> thin film after annealing at <TEX>$800^{\circ}C$</TEX> had increased the stress value, such as 9.09 GPa for the oxygen gas flow of 4 sccm and 8.17 GPa for the oxygen gas flow of 8 sccm. From these results, the temperature dependence of stress state of <TEX>$HfO_2$</TEX> thin films were understood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.