Abstract

This work presents radio-frequency-microelectromechanical-system (RF-MEMS)-based tunable input- and output-matching networks for a multi-band gallium nitride (GaN) power-amplifier applications. In the first part, circuit designs are shown and characterized for a fixed operation mode of the transistor, i.e. either a maximum-output-power- or a maximum-power-added-efficiency (PAE)-mode, which are finally combined into a multi-mode-matching network (M3N); the M3N allows to tune the operation mode of the transistor independently of its operational frequency. The matching networks are designed to provide optimum matching for the power amplifier at three to six different operating frequencies for maximum-output-power- and maximum-PAE-mode. In the frequency range from 3.5 to 8.5 GHz, return losses of 10 dB and higher were measured and insertion losses of 0.5–1.9 dB were demonstrated for the output-matching networks. Further characterizations were performed to test the dependency on the RF-input power, and no changes were observed up to power levels of 34 dBm when cold-switched.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.