Abstract
Functionalization of titanium (Ti)-based alloy implant surfaces by deposition of calcium phosphates (CaP) has been widely recognized. Substituted hydroxyapatites (HA) allow the coating properties to be tailored based on the use of different Ca substitutes. The formation of antibacterial CaP coatings with the incorporation of Zn or Cu by an RF magnetron sputtering is proposed. The influence of RF magnetron targets elemental composition and structure in the case of Zn-HA and Cu-HA, and the influence of substrate’s grain size, the substrate’s temperature during the deposition, and post-deposition heat treatment (HT) on the resulting coatings are represented. Sintering the targets at 1150 °C resulted in a noticeable structural change with an increase in cell volume and lattice parameters for substituted HA. The deposition rate of Cu-HA and Zn-HA was notably higher compared to stochiometric HA (10.5 and 10) nm/min vs. 9 ± 0.5 nm/min, respectively. At the substrate temperature below 100 °C, all deposited coatings were found to be amorphous with an atomic short-range order corresponding to the {300} plane of crystalline HA. All deposited coatings were found to be hyper-stochiometric with Ca/P ratios varying from 1.9 to 2.5. An increase in the substrate temperature to 200 °C resulted in the formation of equiaxed grain structure on both coarse-grained (CG) and nanostructured (NS) Ti. The use of NS Ti notably increased the scratch resistance of the deposited coatings from18 ± 1 N to 22 ± 2 N. Influence of HT in air or Ar atmosphere is also discussed. Thus, the deposition of Zn- or Cu-containing CaP is a complex process that could be fine-tuned using the obtained research results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.