Abstract
Shape memory alloys (SMAs) offer a unique combination of novel properties, such as shape memory effect, super- elasticity, biocompatibility and high damping capacity, and thin film SMAs have the potential to become a primary actuating mechanism for micro-actuators. In this study, TiNiCu films were successfully prepared by mix sputtering of a Ti 55 Ni 45 target with a separated Cu target. Crystalline structure, residual stress and phase transformation properties of the TiNiCu films were investigated using X-ray diffraction (XRD), differential scanning calorimeter (DSC), and curvature measurement methods. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Effects of the processing parameters on the film composition, phase transformation and shape-memory effects were analyzed. Results showed that films prepared at high Ar gas pressure exhibited a columnar structure, while films deposited at a low Ar gas pressure showed smooth and featureless structure. Chemical composition of TiNiCu thin films was dependent on the DC power of copper target. DSC, XRD and curvature measurement revealed clearly the martensitic transformation of the deposited TiNiCu films. When the freestanding film was heated and cooled, a two-way shape memory effect can be clearly observed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have