Abstract

Abstract The beam dynamics in RF guns is characterized by an optimum injection phase which minimizes the RF-field-induced emittance blowup: such a condition corresponds to a vanishing first order term in the phase dependence of the exit transverse momentum. Away from the optimum phase, a sharp increase of the emittance is found. In this paper we analyze the possibility of compensating for both the first and second order terms, in order to recover the minimum emittance value even at phases different from the optimum one. Our scheme is based on the use of an unsymmetrical RF cavity, added downstream of the gun cavity and fully uncoupled from it, in order to be independently phased. At the exit of this cavity the minimum emittance value can be recovered, the injection phase being a free parameter to be independently optimized. In this way higher injection phases can be exploited, where the longitudinal rms emittance displays a minimum, and long bunches extracted from the gun can be magnetically compressed more efficiently, achieving a significant beam brightness increase with respect to conventionally optimized RF guns. An analytical study of the beam dynamics inside the unsymmetrical RF cavity is presented, together with the results of some numerical simulations performed with the PIC code ITACA [L. Serafini and C. Pagani, Proc. 1st EPAC, Rome, June 1988 (Word Scientific) p. 866].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.