Abstract

The voltage-power characteristics and spatial structure of an RF discharge in the mixtures of CO2 and N2 molecular gases with He at total pressures of tens of torr are studied. One-dimensional numerical simulations of an RF discharge are carried out within two approaches: (i) the distribution function and the related kinetic coefficients are assumed to be functions of the local reduced field, and (ii) the kinetic coefficients are functions of the electron mean energy, which is calculated with allowance for both electron heat conduction and diffusion. The latter approach is shown to better describe the existing experimental dependence of the discharge voltage and the phase shift between the discharge current and voltage on the driving power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.