Abstract

Recently, on-chip quantum-cascade-laser-based frequency combs are gaining increasing attention both in the Mid-IR and in the THz spectral regions. THz devices offer the possibility of filling the gap of comb sources in a spectral region were no table-top comb is available. I will discuss direct THz comb generation from both homogeneous and heterogeneous quantum cascade lasers. Octave spanning emission spectra and comb operation on bandwidth larger than 1 THz are reported for heterogeneous cascades. I will also report on a series of new structures with homogeneous cascade design that feature a very low threshold current density ( 1.8 THz) when driven in the NDR region. This extremely broadband emission in the NDR is studied as well with NEGF simulation and is based on an interplay between strong photon assisted transport due to the highly diagonal transition and domain formation.These structures are also showing RF injection locking with extremely reduced microwave powers. We will discuss locking experiments as well as a method to finely control the repetition rate of the laser based on controlled optical feedback. Time resolved spectral measurements aimed to clarify the physics of field domains in the NDR will be also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.