Abstract
Quantum cascade laser (QCL) frequency combs are a promising candidate for chemical sensing and biomedical diagnostics, requiring only milliseconds of acquisition time to record absorption spectra without any moving parts. They are electrically pumped and have a small footprint, making them an ideal platform for on-chip integration. Until now, optical feedback is fatal for frequency comb generation in QCLs and destroys intermodal coherence. This property imposes strict limits on the possible degree of integration. Here, we demonstrate coherent injection locking of the repetition frequency to a stabilized RF oscillator. For the first time, we prove that the spectrum of the injection locked QCL can be phase-locked, resulting in the generation of a frequency comb. We show that injection locking is not only a versatile tool for all-electrical frequency stabilization, but also mitigates the fatal effect of optical feedback on the frequency comb. A prototype self-detected dual-comb setup consisting only of an injection locked dual-comb chip, a lens and a mirror demonstrates the enormous potential for on-chip dual-comb spectroscopy. These results pave the way to miniaturized and all-solid-state mid-infrared spectrometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.