Abstract

Many electrorheological fluids (ERFs) as fluids with micro-structure demonstrate a non-Newtonian behaviour. Rheometric measurements indicate that some flows of these fluids may by modelled as the flows of a Vočadlo ER fluid. In this paper, the flow of a Vočadlo fluid – with a fractional index of non-linearity – in a narrow gap between two fixed surfaces of revolution with a common axis of symmetry is considered. The flow is externally pressurized and it is considered with inertia effect. In order to solve this problem the boundary layer equations are used. The Reynolds number effects (the effects of inertia forces) on the pressure distribution are examined by using the method of averaged inertia terms of the momentum equation. Numerical examples of externally pressurized flows in the gap between parallel disks and concentric spherical surfaces are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.