Abstract

The two-fluid Euler-Euler model can be used for the description of co-existing stratified and dispersed multiphase flow within one flow domain. For realistic engineering applications, turbulence is often modeled in the Reynolds-averaged Navier-Stokes (RANS) framework where closure of the Reynolds stresses is mostly achieved using the turbulent viscosity formulation. It is a well-known problem that at large-scale interfaces between two phases such turbulence modeling breaks down as turbulent viscosity in the vicinity of an interface is over-predicted. To address this issue, we adopt the Egorov approach (Egorov et al., 2014) which locally damps turbulence near the interface. This model is based upon the idea that at a large-scale interface the lighter phase may see the heavier phase much like a solid wall, suggesting a wall-like treatment of turbulent dissipation at the interface. The implementation of the model inside a two-phase formulation of the k–ω model is discussed, and shown to give good predictions of interfacial turbulence in co-current stratified two-phase flow. The Egorov approach is extended to the k–ε model, which may be relevant for a large array of engineering applications in which the k–ε model is more effective than the k-ω model. It is shown that the non-dimensional Egorov approach coefficient is grid dependent. We introduce a new formulation of the interfacial damping term in the two-fluid Euler-Euler model which gives more consistent results for different computational grids in comparison to the original formulation of the Egorov approach. This feature, as well as its straightforward implementation in both the k–ω and k–ε models, make the new model useful to a large array of multiphase engineering problems in which interfacial turbulence damping is relevant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.