Abstract

The interactions between light and plasmonic charge oscillations in conducting materials are important venues for realizing nanoscale light manipulations. Conventional metal-based plasmonic devices lack tunability due to the fixed material permittivities. Here, we show that reconfigurable plasmonic functionalities can be achieved using the spatially controlled phase transitions in strongly correlated oxide films. The experimental results discussed here are enabled by a recently developed scanning probe-based technique that allows a nonvolatile, monoclinic-metal VO2 phase to be reversibly patterned at the nanoscale in ambient conditions. Using this technique, rewritable waveguides, spatially modulated plasmonic resonators, and reconfigurable wire-grid polarizers are successfully demonstrated. These structures, effectively controlling infrared lights through spatially confined mobile carriers, showcase a great potential for building programmable nanoplasmonic devices on correlated oxide platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.