Abstract

Magnetic tunnel junctions (MTJs) with ultrathin MgO tunnel barriers are at the heart of magnetic random-access memory (MRAM) and exhibit potential for spin caloritronics applications due to the tunnel magneto-Seebeck effect. However, the high programming current in MRAM can cause substantial heating which degrades the endurance and reliability of MTJs. Here, we report the thermal characterization of ultrathin CoFeB/MgO multilayers with total thicknesses of 4.4, 8.8, 22, and 44 nm, and with varying MgO thicknesses (1.0, 1.3, and 1.6 nm). Through time-domain thermoreflectance (TDTR) measurements and thermal modeling, we extract the intrinsic (∼3.6 W m-1 K-1) and effective (∼0.85 W m-1 K-1) thermal conductivities of annealed 1.0 nm thick MgO at room temperature. Our study reveals the thermal properties of ultrathin MgO tunnel barriers, especially the role of thermal boundary resistance, and contributes to a more precise thermal analysis of MTJs to improve the design and reliability of MRAM technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.