Abstract

Bio-inspired surfaces with wettability patterns display a unique ability for liquid manipulations. Sacrificing anti-wetting property for confining liquids irrespective of their surface tension (γLV), remains a widely accepted basis for developing wettability patterns. In contrast, we introduce a ‘liquid-specific’ wettability pattern through selectively sacrificing the slippery property against only low γLV (<30 mN m−1) liquids. This design includes a chemically reactive crystalline network of phase-transitioning polymer, which displays an effortless sliding of both low and high γLV liquids. Upon its strategic chemical modification, droplets of low γLV liquids fail to slide, rather spill arbitrarily on the tilted interface. In contrast, droplets of high γLV liquids continue to slide on the same modified interface. Interestingly, the phase–transition driven rearrangement of crystalline network allows to revert the slippery property against low γLV liquids. Here, we report a ‘rewritable’ and ‘liquid-specific’ wettability pattern for high throughput screening, separating, and remoulding non-aqueous liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.