Abstract

This paper presents REWOrD, an approach to compute semantic relatedness between entities in the Web of Data representing real word concepts. REWOrD exploits the graph nature of RDF data and the SPARQL query language to access this data. Through simple queries, REWOrD constructs weighted vectors keeping the informativeness of RDF predicates used to make statements about the entities being compared. The most informative path is also considered to further refine informativeness. Relatedness is then computed by the cosine of the weighted vectors. Differently from previous approaches based on Wikipedia, REWOrD does not require any prepro- cessing or custom data transformation. Indeed, it can lever- age whatever RDF knowledge base as a source of background knowledge. We evaluated REWOrD in different settings by using a new dataset of real word entities and investigate its flexibility. As compared to related work on classical datasets, REWOrD obtains comparable results while, on one side, it avoids the burden of preprocessing and data transformation and, on the other side, it provides more flexibility and applicability in a broad range of domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.