Abstract
To achieve chemical accuracy in free energy calculations, it is necessary to accurately describe the system's potential energy surface and efficiently sample configurations from its Boltzmann distribution. While neural network potentials (NNPs) have shown significantly higher accuracy than classical molecular mechanics (MM) force fields, they have a limited range of applicability and are considerably slower than MM potentials, often by orders of magnitude. To address this challenge, Rufa et al. [Rufa et al. bioRxiv 2020, 10.1101/2020.07.29.227959.] suggested a two-stage approach that uses a fast and established MM alchemical energy protocol, followed by reweighting the results using NNPs, known as endstate correction or indirect free energy calculation. This study systematically investigates the accuracy and robustness of reweighting from an MM reference to a neural network target potential (ANI-2x) for an established data set in vacuum, using single-step free-energy perturbation (FEP) and nonequilibrium (NEQ) switching simulation. We assess the influence of longer switching lengths and the impact of slow degrees of freedom on outliers in the work distribution and compare the results to those of multistate equilibrium free energy simulations. Our results demonstrate that free energy calculations between NNPs and MM potentials should be preferably performed using NEQ switching simulations to obtain accurate free energy estimates. NEQ switching simulations between the MM potentials and NNPs are efficient, robust, and trivial to implement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.