Abstract
In view of the decline of filtering accuracy caused by measured outliers in target tracking application, a novel reweighted robust particle filter is proposed to acquire accurate state estimates in an automotive radar system. To infer the importance of each entry in the multidimensional contaminated measurement vector, we employ a weight vector, which follows a Gamma distribution, to model the measured noise and carry out accurate state estimates. Additionally, the particle filter method is employed to perform approximate posterior inference of state estimates in the nonlinear model. The Cramer–Rao lower bound is provided for the performance evaluation of the proposed method. Both simulation and experimental results demonstrate the superiorities of the proposed algorithm over other robust solutions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have