Abstract

In practical applications, the temporal completeness of knowledge graphs is of great importance. However, previous studies have mostly focused on static knowledge graphs, generally neglecting the dynamic evolutionary properties of facts. Moreover, the unpredictable and limited availability of temporal knowledge graphs, together with the complex temporal dependency patterns, make current models inadequate for effectively describing facts that experience temporal transitions. To better represent the evolution of things over time, we provide a learning technique that uses quaternion rotation to describe temporal knowledge graphs. This technique describes the evolution of entities as a temporal rotation change in quaternion space. Compared to the Ermitian inner product in complex number space, the Hamiltonian product in quaternion space is better at showing how things might be connected. This leads to a learning process that is both more effective and more articulate. Experimental results demonstrate that our learning method significantly outperforms existing methods in capturing the dynamic evolution of temporal knowledge graphs, with improved accuracy and robustness across a range of benchmark datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.