Abstract

Microplastic remediation in aquatic bodies is essential for the entire ecosystem, but is challenging to achieve with a universal and efficient strategy. Here, we developed a sustainable and environmentally adaptable adsorbent through supramolecular self-assembly of chitin and cellulose. This biomass fibrous framework (Ct-Cel) showcases an excellent adsorption performance for polystyrene, polymethyl methacrylate, polypropylene, and polyethylene terephthalate. The affinity for diverse microplastics is attributed to the transformation of multiple intermolecular interactions between different microplastics and Ct-Cel. Meanwhile, the strong resistance of Ct-Cel to multiple pollutants in water enables an enhanced adsorption when coexisting with microorganisms and Pb2+. Moreover, Ct-Cel can remove 98.0 to 99.9% of microplastics in four types of real water and maintains a high removal efficiency of up to 95.1 to 98.1% after five adsorption cycles. This work may open up prospects for functional biomass materials for cost-efficient remediation of microplastics in complex aquatic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.