Abstract

Microplastics (MPs) in natural environments have attracted lots of attention. Although the quantity of MPs present in terrene is much higher than that in aquatic environment, few studies have investigated the chemical behavior of MPs in terrestrial environment. This study investigate the Cu2+ (as a model heavy metal) adsorption capacity of six kinds of MPs (polyamide-6 (PA), polyethylene (PE), polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA)) in batch adsorption experiments and the effects of different soil environmental factors, including pH and the presence of cations and low-molecular-weight organic acids (LMWOAs), as well as ultraviolet (UV) aging. The Cu2+ adsorption capacities of PA and PMMA were higher than those of other MPs and their maximum equilibrium adsorption capacities (estimated by the Langmuir adsorption equation) were 323.6μg/g ± 38.2 and 41.03 ± 1.78μg/g, respectively. The Cu2+ adsorption on MPs was affected by pH, and the greatest amount of Cu2+ adsorbed on PA and PMMA was observed at pH = 6 and pH = 7, respectively. The presence of Ca2+ or Mg2+ inhibited Cu2+ adsorption by MPs, due to competition for the adsorption sites. Moreover, Cu2+ adsorption by MPs was affected by various types of LMWOAs. The Cu2+ adsorption on PA was significantly reduced by citric acid, followed by oxalic acid, and oxalic acid was particularly evident for Cu2+ adsorption on PMMA. UV aging (200h) had different effect on Cu2+ adsorption on MPs and it depends on the change of carbonyl index. Results demonstrate that soil environmental factors can change the ability of different MPs to adsorb Cu2+ and affect the transport of pollutants as carriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.