Abstract

AbstractThe ligands role in normal atom transfer radical polymerization (ATRP) is not only for controlling the system but also regulate the rate of polymerization depending the solubility in the reaction media. Solubility of the catalyst/ligand complexes in organic media is of particular importance to attain homogeneous polymerization conditions. The linear multi‐dentate amine ligands with a long aliphatic chain on the nitrogen atoms provide solubility of its metal complexes in organic solvents. However, the increasing length of the alkyl substituents induces steric effects and can alter the redox potential of the metal center. Herein, to understand the effect of alkyl length, we report the synthesis of tri‐, tetra‐dentate linear amine ligands, diethylenetriamine, triethylenetetramine having n‐alkyl halides containing odd carbon chain lengths (C3H7‐, C5H9‐), respectively. Well‐defined polymers were obtained in ATRP of S and MMA using synthesized ligands. Apparently, increasing the alkyl chain length was sufficient to provide homogeneous ATRP medium, which was not achieved with methyl‐substituted ligands (e.g., pentamethyldiethylenetriamine, PMDETA and hexamethyltriethylenetetramine, HMTETA). In combining ATRP results for odd (synthesized) and even carbon number alkylated ligands (literature), linear decreasing trend was observed on apparent rate constant (kpapp) by the increasing the alkyl chain length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.