Abstract

For phase transitions in disordered systems, an exact theorem provides a bound on the finite size correlation length exponent: \nu_{FS}<= 2/d. It is believed that the true critical exponent \nu of a disorder induced phase transition satisfies the same bound. We argue that in disordered systems the standard averaging introduces a noise, and a corresponding new diverging length scale, characterized by \nu_{FS}=2/d. This length scale, however, is independent of the system's own correlation length \xi. Therefore \nu can be less than 2/d. We illustrate these ideas on two exact examples, with \nu < 2/d. We propose a new method of disorder averaging, which achieves a remarkable noise reduction, and thus is able to capture the true exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.