Abstract

Delamination is the dominating failure mechanism in composite adhesive joints. A deep insight into the delamination failure mechanism requires advanced numerical methods. Currently, cohesive-zone models (CZMs), in combination with the finite-element analysis (FEA), have become powerful tools for modeling the initiation and growth of delaminations in composites. However, ensuring the numerical convergence in the CZMs used for a delamination analysis of three-dimensional (3D) composite structures is always a challenging issue due to the “snap-back” instability in the nonlinear implicit FEA, which arises mainly from the cohesive softening behavior. Based on the midplane interpolation technique, first numerical techniques for implementing 3D bilinear and exponential CZMs by using ABAQUS-UEL (user element subroutine) are developed in this paper. In particular, a viscous regularization by introducing the damping effect into the stiffness equation is used to improve the convergence. Two examples, a single-lap composite joint and a composite skin/stiffener panel under tension, demonstrate the numerical technique developed. Then, the effect of cohesion parameters on the numerical convergence based on the viscous regularization is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.