Abstract

A mathematical model of the Münch pressure-flow hypothesis for long-distance transport of carbohydrates via sieve tubes is constructed using the Navier-Stokes equation for the motion of a viscous fluid and the van't Hoff equation for osmotic pressure. Assuming spatial dimensions that are appropriate for a sieve tube and ensuring suitable initial profiles of the solute concentration and solution velocity lets the model become mathematically tractable and concise. In the steady-state case, it is shown via an analytical expression that the solute flux is diffusion-like with the apparent diffusivity coefficient being proportional to the local solute concentration and around seven orders of magnitude greater than a diffusivity coefficient for sucrose in water. It is also shown that, in the steady-state case, the hydraulic conductivity over one metre can be calculated explicitly from the tube radius and physical constants and so can be compared with experimentally determined values. In the time-dependent case, it is shown via numerical simulations that the solute (or water) can simultaneously travel in opposite directions at different locations along the tube and, similarly, change direction of travel over time at a particular location along the tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.