Abstract

This article discusses the dynamic modeling for control of Gough–Stewart platform manipulator with special emphasis on universal–prismatic–spherical leg kinematics. Inverse dynamic model of these six degrees of freedom parallel manipulator robots is reviewed, while complete dynamics with true kinematics of universal–prismatic–spherical legs is compared with several models found in the literature. Most existing models have not taken into account some of the legs kinematical effects, namely the legs angular velocity around their axes and the internal singularities due to passive joints; some other used a simplified parameterization to describe the leg kinematics. Furthermore, some kinetic assumption can be used to reduce the computational burden. This article shows the effect of all these simplifications on the driving forces by simulating the different dynamic models for a commercial manipulator and for different sets of geometric and dynamic parameters of manipulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call