Abstract
We study the Schr\"odinger operator with a potential given by the sum of the potentials for harmonic oscillator and imaginary cubic oscillator and we focus on its pseudospectral properties. A summary of known results about the operator and its spectrum is provided and the importance of examining its pseudospectrum as well is emphasized. This is achieved by employing scaling techniques and treating the operator using semiclassical methods. The existence of pseudoeigenvalues very far from the spectrum is proven, and as a consequence, the spectrum of the operator is unstable with respect to small perturbations and the operator cannot be similar to a self-adjoint operator via a bounded and boundedly invertible transformation. It is shown that its eigenfunctions form a complete set in the Hilbert space of square-integrable functions; however, they do not form a Schauder basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.