Abstract
A classical theorem of Stone and von Neumann says that the Schr\"{o}dinger representation is, up to unitary equivalences, the only irreducible representation of the Heisenberg group on the Hilbert space of square-integrable functions on configuration space. Using the Wigner-Moyal transform we construct an irreducible representation of the Heisenberg group on a certain Hilbert space of square-integrable functions defined on phase space. This allows us to extend the usual Weyl calculus into a phase-space calculus and leads us to a quantum mechanics in phase space, equivalent to standard quantum mechanics. We also briefly discuss the extension of metaplectic operators to phase space and the probabilistic interpretation of the solutions of the phase space Schr\"{o}dinger equation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.