Abstract
Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.
Highlights
According to the World Health Organization, cardiovascular diseases (CVDs) are the number one cause of death worldwide [1]
An estimated 17.3 million people died from CVDs in 2008, representing 30% of all global deaths [1]
It is expected that the number of mortalities due to CVDs, mainly from heart disease and stroke, will reach 23.3 million by 2030 and are projected to remain the single leading cause of death for several decades [2]
Summary
According to the World Health Organization, cardiovascular diseases (CVDs) are the number one cause of death worldwide [1]. An estimated 17.3 million people died from CVDs in 2008, representing 30% of all global deaths [1]. It is expected that the number of mortalities due to CVDs, mainly from heart disease and stroke, will reach 23.3 million by 2030 and are projected to remain the single leading cause of death for several decades [2]. As a consequence of direct and indirect costs of CVD, medical researchers have placed significant importance on cardiac health research. This has led to a strong focus on technological advances with respect to cardiac function assessment. One such research pathway is the improvement of conventional cardiovasculardiagnosis technologies used in hospitals/clinics
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have