Abstract

Abstract. Patagonia is thought to be one of the wettest regions on Earth, although available regional precipitation estimates vary considerably. This uncertainty complicates understanding and quantifying the observed environmental changes, such as glacier recession, biodiversity decline in fjord ecosystems and enhanced net primary production. The Patagonian Icefields, for example, are one of the largest contributors to sea-level rise outside the polar regions, and robust hydroclimatic projections are needed to understand and quantify current and future mass changes. The reported projections of precipitation from numerical modelling studies tend to overestimate those from in situ determinations, and the plausibility of these numbers has never been carefully scrutinized, despite the significance of this topic to our understanding of observed environmental changes. Here I use simple physical arguments and a linear model to test the plausibility of the current precipitation estimates and its impact on the Patagonian Icefields. The results show that environmental conditions required to sustain a mean precipitation amount exceeding 6.09±0.64 m yr−1 are untenable according to the regional moisture flux. The revised precipitation values imply a significant reduction in the surface mass balance of the Patagonian Icefields compared to previously reported values. This yields a new perspective on the response of Patagonia's glaciers to climate change and their sea-level contribution and might also help reduce uncertainties in the change of other precipitation-driven environmental phenomena.

Highlights

  • Patagonia’s weather and climate are largely shaped by baroclinic eddies, which are characterized by the interaction of the planetary waves with the mean flow (Garreaud, 2009; Garreaud et al, 2013; Schneider et al, 2003; Vallis et al, 2014)

  • This implies that uncertainties in the incoming water vapour flux (WVF) directly impact the precipitation estimate. (ii) The terrain-forced uplift and condensation of moist air masses is assumed to be the dominant precipitation formation process in central Patagonia. (iii) The atmospheric drying ratio (DR) derived from observed isotope data is a valid measure for the cross-mountain fractionation of the WVF

  • The present study has shown on the basis of simple physical arguments and a linear model that it is very unlikely that the moisture flux from the Pacific will be sufficient to sustain the reported extreme mean precipitation amounts for Patagonia

Read more

Summary

Introduction

Patagonia’s weather and climate are largely shaped by baroclinic eddies, which are characterized by the interaction of the planetary waves with the mean flow (Garreaud, 2009; Garreaud et al, 2013; Schneider et al, 2003; Vallis et al, 2014). The same mesoscale eddies efficiently transfer water vapour from the tropics poleward (Langhamer et al, 2018; Schneider et al, 2010; Trenberth et al, 2005), and regularly (every 9–12 d) these trigger narrow filaments of water-vapour-rich bursts called atmospheric rivers. These features temporarily increase the vertically integrated water vapour content (IWV) in the Southern Hemisphere midlatitudes by more than 200 % (Durre et al, 2006; Waliser and Guan, 2017). The strong orographic influence on the precipitation distribution is evident from both remote sensing (Wentz et al, 1998) and terrestrial observa-

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call