Abstract

To meet Australian renewable energy target of generating 20% of renewable energy by 2020, large scale wind farms are being planned to be connected to the Queensland network. Considering this large scale wind power integration, it is of prime importance to investigate its influence on power system stability. In this paper, small-signal stability of the Queensland network has been re-visited considering near future wind power penetration. The expected wind power is integrated to the nearest available high voltage bus of the grid via step up transformer and transmission line with appropriate capacity. Aggregated doubly fed induction generator model is used to simulate wind farms. This paper investigates the impact of wind power integration on the damping of electromechanical modes of the Queensland grid. Wind power is accommodated by considering load growth and generator displacement individually for getting useful insight into its impact on damping of the grid. The sensitivity of the system damping performance under large scale wind power integration is assessed and presented through eigenvalue analysis. PSS/E and Mudpack software is used to carry out simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.