Abstract
ABSTRACTThe least squares-based eigenfilter method has been applied to the design of both finite impulse response (FIR) filters and wideband beamformers successfully. It involves calculating the resultant filter coefficients as the eigenvector of an appropriate Hermitian matrix, and offers lower complexity and less computation time with better numerical stability as compared to the standard least squares method. In this paper, we revisit the method and critically analyse the eigenfilter method by revealing a serious performance issue in the passband of the designed FIR filter and the mainlobe of the wideband beamformer, which occurs due to a formulation problem. A solution is then proposed to mitigate this issue by imposing an additional constraint to control the response at the passband/mainlobe, and design examples for both FIR filters and wideband beamformers are provided to demonstrate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.