Abstract
Abstract Classically, molecular phylogenetic trees of Phyllostomidae have been inferred using a combination of a few mitochondrial and nuclear markers. However, there is still uncertainty in the relationships, especially among deep clades within the family. In this study, we provide newly sequenced complete mitochondrial genomes from 26 bat species, including genomes of 23 species reported here for the first time. By carefully analysing these genomes using maximum likelihood and Bayesian methods and different ingroup and outgroup samples, partition schemes and data types, we investigated the robustness and sensitivity of our phylogenetic results. The optimal topologies were those inferred from the complete data matrix of nucleotides, with complex and highly parameterized substitution models and partition schemes. Our results show a statistically robust picture of the evolutionary relationships between phyllostomid subfamilies and clarify hitherto uncertain relationships of Lonchorhininae and Macrotinae.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.