Abstract

BackgroundThe stag beetle Lucanus cervus (Coleoptera: Lucanidae) is widely distributed in Europe. Habitat loss and fragmentation has led to significant reductions in numbers of this species. In this study, we sequenced the complete mitochondrial genome of L. cervus and reconstructed phylogenetic relationships among Lucanidae using complete mitochondrial genome sequences.MethodsRaw data sequences were generated by the next generation sequencing using Illumina platform from genomic DNA of L. cervus. The mitochondrial genome was assembled by IDBA and annotated by MITOS. The aligned sequences of mitochondrial genes were partitioned using PartitionFinder 2. Phylogenetic relationships among 19 stag beetle species were constructed using Maximum Likelihood (ML) method implemented in IQ-TREE web server and Bayesian method implemented in PhyloBayes MPI 1.5a. Three scarab beetles were used as outgroups.ResultsThe complete mitochondrial genome of L. cervus is 20,109 bp in length, comprising 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNAs and a control region. The A + T content is 69.93% for the majority strand. All protein-coding genes start with the typical ATN initiation codons except for cox1, which uses AAT. Phylogenetic analyses based on ML and Bayesian methods shown consistent topologies among Lucanidae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call