Abstract
All-inorganic cesium lead halide perovskite CsPbX3 (X = Cl, Br, I) nanocrystals have emerged as promising luminescent quantum dots. In this review, we summarize recent work on their synthesis, luminescent properties, and stabilities. Through controlling the composition of the alloyed halides and quantum size effects, the band gaps and emission wavelengths of CsPbX3 nanocrystals are readily tunable over the entire visible range. Their sharp emission line-widths extend the color gamut of liquid crystal displays. They also exhibit high photoluminescence (PL) quantum yields and fast PL lifetimes. CsPbX3 nanocrystals with both cubic and plate shapes have been successfully synthesized through several liquid-phase methods, such as hot-injection, room-temperature, and amine-free methods. The sizes and shapes of CsPbX3 nanocrystals can be controlled via the reaction temperature and the length of the n-alkyl carboxylic acids and n-alkylamines used in their synthesis. Several attempts have been made to improve their stabilities during storage, at high temperature, and under light irradiation, for example by incorporation of CsPbX3 nanocrystals into silica or polymer matrixes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.