Abstract

In this article, the extrapolation procedures of π-π* electronic transition energy on π-conjugated oligomers are reexamined. Different models, including the simplest coupled oscillator, the free electron, the Hückel approach, the molecular exciton model, and some specific fitting-functions, are compared using the transition energies derived from theoretical calculations on three thiophene-based oligomer series. Specifically, oligomers of up to 30 repeating units have been considered to include the saturation effects as a function of chain length. The coupled oscillator model of W. Kuhn and the fitting-function of Hirayama are the models that present the better suit on the transition energy interpolation as a function of chain length. Using only the first four oligomers of the series (n = 2 up to 8) yields an estimation of the transition energy on the polymer limit with an average error of ∼1.5%. The vertical and adiabatic ionization potential present a better fit with the Hückel model approach. Finally, implications of the environmental polarity on the electronic properties, molecular geometry, charge distribution, and aromaticity are shortly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call