Abstract

Kinesin-1 microtubule motors are common kinesin motors from protozoa, fungi and animals. They transport vesicular or particle cargo in a strictly regulated manner. The relatively well-studied tail inhibition mechanism is based on a conformational change that leads to an interaction of Kinesin-1's tail with the junction of neck and hinge regions. This folding causes a decrease in microtubule binding and motor activity. In fungal Kinesin-1 motors several lines of evidence suggest that a conserved tyrosine in the neck coiled-coil mediates this inhibition. In the active state, a region surrounding a conserved tryptophan in the hinge stabilises the neck coiled-coil, and prevents the tyrosine from inhibiting. Although animal and fungal Kinesin-1 motors are clearly homologous and function according to the same chemo-mechanical mechanism, they differ in their regulation. Unlike fungal Kinesin-1s, animal kinesins associate with light chains that are important for regulation and cargo interaction. Several proteins interacting with animal Kinesin-1 heavy or light chains are known, among them typical scaffolding proteins that seem to link Kinesin-1 to signalling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.