Abstract

Tissue culture has played a major role in the rapid advances made in medical science in the past 50 yr. The full potential of the technique, however, is limited by the fact that growth of cells is usually restricted to a monolayer accompanied by major decreases in many of their tissue-specific functions. This has been shown to be due, in large part, to the inadequate oxygenation of cells growing in tissue culture dishes. Studies that show that the high charge density and rigidity of the plastic and glass surfaces used for culture are also major factors limiting growth of cells to a monolayer, are reviewed. A new culture system has been developed in which cells are grown on substrata made using perfluorocarbons (PFCs) coated with collagen type 1 and other adhesive factors. Perfluorocarbons have a much higher solubility for oxygen than water and have been used as oxygen delivery systems to protect cells from hypoxia. These new PFC-based substrata can provide both the optimal level of oxygen cells need to maintain differentiated functions and the flexible and weaker type of adhesion that allows cells to round up, interact with each other, and when provided with adequate nutritional support, to grow in three dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.