Abstract

Wearable thermoelectric generators (WTEGs) can incessantly convert body heat into electricity to power electronics. However, the low efficiency of thermoelectric materials, tiny terminal temperature difference, rigidity, and neglecting optimization of lateral heat transfer preclude WTEGs from broad utilization. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of flexibility and high normalized power density in thermoelectric generators by establishing the links among materials, TE performance, and advanced design of WTEGs (structure, heatsinks, thermal regulation, thermal analysis, etc.) based on inorganic bulk TE materials. Each section starts with a concise summary of its fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of wearable thermoelectric devices and potential applications. Overall, this review will serve to help materials scientists, electronic engineers, particularly students and young researchers, in selecting suitable thermoelectric devices and potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.