Abstract
The development of vanadium redox flow batteries (VRFBs) requires the exploration of effective and affordable electrodes. In order to increase the electrochemical activity of these electrodes and decrease the polarizations, they are doped with an electrocatalyst. In this context, the use of biomass-derived materials as electrocatalysts in VRFBs has received much attention recently due to their widespread availability, renewable nature, low cost, and high energy efficiency. This paper aims to review the synthesis methods of biomass-derived carbon materials and their applications in VRFBs. In line with this aim, recent developments in carbon-based electrode modification methods and their electrochemical performance in VRFBs are summarized. The studies show that porous carbon electrocatalysts increase energy efficiency by reducing overpotentials and improving electrocatalytic activation. In addition, it is thought that biomass carbon doped electrocatalysts can improve the hydrophilicity of the electrodes, the transfer of vanadium ions, and the reaction kinetics. The highest charge voltage decrease rate of 8.61% was obtained in the Scaphium scaphigerum, whereas the highest discharge voltage increase rate of 14.29% was observed in the twin cocoon, as in all reviewed studies. Furthermore, the maximum energy efficiency (75%) was achieved in a VRFB equipped with an electrode doped with carbon derived from Scaphium scaphigerum and cuttlefish. It can be concluded from the reviewed studies that the electrochemical performances of electrodes doped with biomass-derived carbons in VRFBs are more effective than those of the bare electrodes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have