Abstract
As global energy crises and climate change intensify, offshore wind energy, as a renewable energy source, is given more attention globally. The wind power generation system is fundamental in harnessing offshore wind energy, where the control and design significantly influence the power production performance and the production cost. As the scale of the wind power generation system expands, traditional methods are time-consuming and struggle to keep pace with the rapid development in wind power generation systems. In recent years, artificial intelligence technology has significantly increased in the research field of control and design of offshore wind power systems. In this paper, 135 highly relevant publications from mainstream databases are reviewed and systematically analyzed. On this basis, control problems for offshore wind power systems focus on wind turbine control and wind farm wake control, and design problems focus on wind turbine selection, layout optimization, and collection system design. For each field, the application of artificial intelligence technologies such as fuzzy logic, heuristic algorithms, deep learning, and reinforcement learning is comprehensively analyzed from the perspective of performing optimization. Finally, this report summarizes the status of current development in artificial intelligence technology concerning the control and design research of offshore wind power systems, and proposes potential future research trends and opportunities.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have