Abstract

Bearingless switched reluctance motor (BSRM) adopts a doubly salient structure without windings on the rotor. BSRMs have the advantages of high rate of fault tolerance and simple structure, high power, super high speed and strong adaptability. They have broad application prospects in aerospace, flywheel energy storage, new energy and biomedical fields. Firstly, the suspension operation mechanism of a conventional double winding BSRM is described in this paper. The coupling between torque and suspension force is analyzed with a finite element method. On this basis, from the perspective of magnetic circuit optimization of the torque system and suspension system, the magnetic circuit design, decoupling mechanism and performance characteristics of self-decoupled BSRMs with different topological structures are described centering on the self-decoupled topology form of the BSRM. Finally, the study and development of BSRMs in the future are prospected based on the research status.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call