Abstract

The intelligence of modern technologies relies on perceptual systems based on microscale sensors. However, because of the traditional top-down fabrication approaches performed on planar silicon wafers, a large proportion of existing microscale sensors have 2D structures, which severely restricts their sensing capabilities. To overcome these restrictions, over the past few decades, increasing efforts have been devoted to developing new fabrication methods for microscale sensors with 3D engineered structures, from bulk chemical etching and 3D printing to molding and stress-induced assembly. Herein, the authors systematically review these fabrication methods based on the applications of the resulting 3D sensors and discuss their advantages compared to their 2D counterparts. This is followed by a perspective on the remaining challenges and possible opportunities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.