Abstract

The development of small modular reactors (SMRs) has attracted significant attention owing to the increasing interest in energy security and carbon neutrality worldwide. An SMR is an advanced nuclear reactor with a power capacity of up to 300 MWe per unit. To fabricate the SMR, innovative manufacturing technologies such as powder metallurgy hot isostatic pressing (PM-HIP), electron beam welding (EBW), and diode laser cladding (DLC) were introduced to reduce the fabrication cost and time. Particularly, this replaced arc-based welding and cladding with high-energy beam-based EBW and DLC. The EBW could provide one pass welding for extremely thick specimens. In addition, in the case of using the DLC, only one layer cladding was acceptable for corrosion protection owing to its low dilution rate. However, studies on the innovative manufacturing technologies were less reported because of technology security. In this study, recently reported research articles regarding the EBW and DLC were reviewed. In particular, local vacuum and reduced pressure electron beam studies were discussed by comparing their the arc welding results. Process parameter studies on the DLC were also reviewed to introduce appropriate optimized conditions for the industry application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call