Abstract

Standard cathodoluminescent phosphors normally lose brightness upon bombardment with electron beams. A combination of techniques such as x-ray photoelectron spectroscopy, Auger electron spectroscopy, and cathodoluminescence (CL) spectroscopy was used to show that the main reason for the degradation in CL intensity is the formation of a nonluminescent “dead layer” on the surface due to an electron stimulated surface chemical reaction. The decrease in luminance was found to be a result of the growth of the dead layer. Different phosphors which include sulfide-based as well as oxide-based phosphors reacted similarly under electron bombardment. When ZnS phosphor powder was exposed to the electron beam in a water-rich O2 ambient, a chemically limited ZnO layer was formed on the surface. A layer of ZnSO4 was formed on the surface during the electron beam degradation of the ZnS phosphor powder in a dry O2 ambient. The electron stimulated reaction led to the formation of a luminescent SiO2 layer on the surface of...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.