Abstract

Vapor Jet Refrigeration (VJR) system is attractive among various heat operated refrigeration systems, because it has the potential of utilizing low grade thermal energy with source temperature as low as 60°C, which could be harnessed from renewable energy, waste heat, automobile-exhaust, etc. Also absence of moving parts in this system resulted in lesser maintenance costs. In addition to that this system causes very low environmental pollution due to almost negligible consumption of high grade energy from fossil fuels for running a small liquid pump of the system. Although VJR was invented very long back, still performance improvement to compete with vapor compression refrigeration system is in progress. Plenty of research has been carried out in different aspects for enhancing the efficiency of this technology. The present work/paper gives an overview of VJR system and its progression in the aspect of performance improvement. The developmental progress of the VJR technology presented in this paper has been categorized into the following groups, namely (a) general performance of an ejector, (b) numerical analysis, viz., classical one-dimensional analysis and Computational Fluid Dynamics (CFD) analysis, (c) experimental studies, (d) flow visualization studies, (e) performance enhancement techniques, and (f) two-phase ejector. And also presented a glimpse of some of the review papers from literature on VJR system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.