Abstract

Thermoacoustic air-to-water air source heat pumps (TAWASHP) are the eco-friendly, simple, compressor less, low cost and likely looking future substitute for the existing compressor-based heat pumps. In this work, the design optimization of the 1-kW TAWASHP with helium for the temperature difference of 15 to 70 K for pumping heat from the atmospheric air to water using the linear thermoacoustic concepts was discussed. The optimized design can fit for both cooling and water heating applications without wasting the heat rejection to the surrounding atmosphere, rather supplied to the insulated hot water tank. The optimized one-fourth wavelength resonator TAWASHP shows the coefficient of performance of 1.1 to 2.34. The theoretical results are validated with the DeltaEC software results, and the results are in concurrence with each other. The DeltaEC predicts the TAWASHP can supply 1.55 to 3.35 kW of heat to water, which is equivalent to 37.3 to 80.3 kWh of heat energy per day.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.