Abstract
Vegetation phenology is sensitive to climate change and has been defined as the footprint of ongoing climate change. Previous studies have shown that the spatial difference in China’s vegetation phenology varies substantially in both spring and autumn. Here, we reviewed phenological dynamics at the national and the regional scale of China over the period 1982−2020 using a remote sensing-based dataset and meta-analysis from phenological studies in China. We also explored the underlying mechanisms of both spring and autumn phenology and discussed potential phenological studies under future climate conditions. We found that, over the past four decades, the spring phenology advanced at a rate of 0.23 ± 0.47 days/year, while the autumn phenology was delayed at a rate of 0.17 ± 0.46 days/year. This led to an extended vegetation growth season of approximately 5 days per decade. The trends in the spring and autumn phenology were spatially specific in the Northern region, Northwest region, Qinghai–Tibet region, and Southern region: the change in spring phenology was −0.16, −0.46, −0.18, and −0.13 days/year, respectively, while the change in autumn phenology was 0.02, 0.32, 0.09, and 0.28 days/year, respectively. We also explored the dominant climatic drivers of regional phenological changes. We found that temperature was the dominant factor for spring phenology in cold regions, while precipitation, radiation, and temperature co-determined spring phenology in warm regions. The autumn phenology was affected by all three environmental cues but the effect of temperature was larger than that of radiation and precipitation across all regions. In future climate warming conditions, we recommend that studies focus on the phenological feedback mechanisms, such as the climatic and hydrological effects of vegetation changes, and agricultural phenology to investigate its fundamental role in crop productivity, especially under extreme climate events, to ensure national food security and ecological security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Physical Geography: Earth and Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.