Abstract

Phase change materials (PCM)-based energy storage system is a quite promising technology for the efficient usage of the excess solar energy produced and utilize it at the hour of high demand. The major challenge here is the selection of PCMs for energy storage applications. Inorganic PCMs possess higher thermal conductivity and energy storage capacity when compared to organic PCMs. Thus, inorganic PCMs have a great potential to be used in energy storage systems majorly in medium to high-temperature applications where organic PCMs cannot be used. An accurate and reliable data on the thermophysical properties of the PCMs is essential before its selection and installation of a energy storage system. In this study, various characterization methods based on calorimetry, temperature difference, cooling rate, and cooling curve used to date are described. Methods such as conventionally used differential scanning calorimetry (DSC), T-history method, and computer-aided cooling curve analysis (CACCA) are reviewed and discussed in this study. The two modes of CACCA, Newtonian, and Fourier techniques are explained. The advantages and limitations associated with all these methods are outlined. Inverse heat conduction problem (IHCP)-energy balance method based on CACCA which is devoid of the limitations associated with the conventional characterization methods is discussed. Thermal conductivity is the main characterization parameter of the PCMs and therefore methods to measure thermal conductivity are critically reviewed in this study. Thermal cycling stability is discussed in the context of the review.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call