Abstract

Investigating the constitutive relationship and the damage failure mechanism of solid propellants is of significance for improving the safety, storage period and use efficiency of solid rocket motors. This paper focuses on the complex mechanical response behavior of composite solid propellants under loads and introduces experimental research on quasi-static and dynamic mechanical properties. Limited by the accuracy of instruments and testing methods, the research progress of macroscopic constitutive models, mesoscopic mechanical models and microscopic molecular models is summarized from the perspective of numerical simulations based on model scale and modeling methods. This paper tracks the historical progress of key models and summarizes the main achievements and prospects in this field. The research in this paper has high scientific and theoretical significance and engineering application value. It can provide an important reference and guidance for the structural optimization and performance improvement of solid propellants and lay a solid foundation for the development of solid rocket motors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call